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chrysotile surface: a molecular dynamics
and spectroscopic investigation
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The human serum albumin (HSA) secondary structure modifications induced by the
chrysotile surface have been investigated via computational molecular dynamics (MD) and
experimental infrared spectroscopy (FTIR) on synthetic chrysotile nanocrystals coated with
different amount of HSA. MD simulations, conducted by placing various albumin subdomains
close to the fixed chrysotile surface, show an initial adsorption phase, accompanied by local
rearrangements of the albumin motifs in contact with the chrysotile layer. Next, large-scale
rearrangements follow with consequent secondary structure modifications.

Gaussian curve fitting of the FTIR spectra obtained for HSA-coated synthetic chrysotile
nanocrystals has allowed the quantification of HSA structural modifications as a function of
the amount of protein adsorbed. The experimental results support the atomistic computer
simulations providing a realistic description of the adsorption of plasma proteins onto
chrysotile and unravelling a key step in the understanding of asbestos toxicity.

Keywords: solid-liquid interface; molecular dynamics; Fourier transform infrared;
human serum albumin
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1. INTRODUCTION

A real understanding of life’s processes requires an
understanding of how proteins and other endogenous
macromolecules perform their actions. Proteins can be
viewed as copolymers consisting of different amino
acids, connected through the so-called peptide bond,
and can be studied at various levels of detail, from the
quantum mechanical to the statistical mechanical,
the choice depending on the type of investigation. The
simplest amino acid characterization is in terms of
their hydrophobic or hydrophilic nature, for example
through the use of a number of different coding scales,
such as the Kyte & Doolittle (1982), the Hopp & Woods
(1983) and the Rose (Rose et al. 1985) hydropathy
scales. However, it is clear that such description
provides an oversimplified view of some important
details of protein behaviour. The protein conformation
determined by X-ray diffraction (solid state) and
NMR (in solution) gives us a detailed description (or
a ‘snapshot’) of the three-dimensional structure of a
macromolecule, but other features are also important.
Biological molecules are not rigid, and dynamic changes
within a molecular structure may play a significant role
in the physiological function of the molecule. For
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proteins to exploit their function, they must fold into
the correct three-dimensional structure (incorrect
folding is, for example, implicated in diseases such as
Alzheimer’s and BSE; Stanley 1997; Kostova & Wolf
2003). Large proteins called chaperonins can direct
correct folding (Horwich et al. 2004; Horovitz &
Willison 2005). The interaction of biological macro-
molecules, in particular proteins, with a foreign surface
is a closely related field that play an important role in a
wide range of biological processes (such as cell
aggregation and interaction of ligands with membrane
receptors) and is not easily amenable to theory owing to
the structural details at the atomistic level and the
denaturation process these molecules can undergo upon
adsorption. In recent years, computer simulations have
added significant new insights, complementing both
theory and experiments (Noinville et al. 1995; Euston
2004; Ganazzoli & Raffaini 2005). The atomistic
computer simulations are the only techniques that
can deal with this task, providing a realistic description
of the adsorption process, although the size and the
complexity of the problem are often discouraging.

In this respect, the study of the adsorption
mechanism of plasma proteins on the surface of a
human health hazardous material is a key step in the
possible understanding of its toxicity and mutagenic
properties. Asbestos fibres are by far the most

This journal is © 2007 The Royal Society
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well-known environmentally dangerous agents: human
health hazards associated with airborne asbestos fibres
exposure are well documented in the medical literature
(Schreier 1989; Mossman 1993).

Environmental and occupational exposure to asbes-
tos fibres is frequently associated with pleural and
parenchymal lung diseases, such as lung cancer and
malignant mesothelioma (Churg & Warnock 1981;
Churg & Green 1998).

Ninety-five per cent of manufactured asbestos is
composed of chrysotile, MgsSi;O5(OH), (Chissick
1987). This latter consists of sheets of tetrahedral (T)
silica in a pseudo-hexagonal network joined to a brucite
layer, in which Mg is in octahedral (O) coordination
with the apical oxygen of the SiOy4 layer and additional
hydroxyl groups. The mismatch of the smaller lateral
dimension of the SiO, sheet with respect to the
Mg(OH), layer is accommodated by the concentrically
or spirally curled cylindrical chrysotile structure
(Whittaker 1956, 1957; Yada 1967, 1971). The presence
of impurities, ion substitutions and structural disorder
in mineral chrysotile affects not only its morphology
and chemical-physical properties, but also its
interaction with biological systems (Whittaker &
Wicks 1970; Stroink et al. 1985). Chrysotile fibres
from different mines exhibit chemical-physical proper-
ties which change appreciably from sample to sample
(Yada 1971).

Stoichiometric chrysotile nanotubes have been
synthesized as a unique phase to be used as a reference
sample with definite structure, morphology and
chemical composition for investigation of the chemical
and physical properties of chrysotile fibres, along with
their interactions with biological systems (Falini et al.
2002, 2004; Bergamini et al. 2004; Gazzano et al. 2005,
2007; Roveri et al. 2006).

In the last decades, the adsorption of albumin onto
mineral asbestos fibres has been investigated by employ-
ing X-ray photoelectron spectroscopy (XPS; Jaurand
et al. 1983), FTIR and NMR spectroscopies (Dumitru-
Stanescu et al. 1994), revealing the tendency of mineral
chrysotile fibres to yield adducts with albumin.

Recently, the first morphological evidence of bovine
serum albumin (BSA) adsorption onto synthetic
stoichiometric chrysotile nanocrystals has been
obtained, and BSA secondary structure modifications
induced by the surface interaction have been quantified
by FTIR spectroscopy on the BSA-coated chrysotile
nanocrystals (Falini et al. 2006) and circular dichroism
(CD) investigations on the protein solution exchanged
from the chrysotile surface (Sabatino et al. in press).

In the present paper, the interaction of selected
human serum albumin (HSA) subdomains with the
chrysotile surface was investigated through molecular
mechanics (MM) and molecular dynamics (MD)
simulations. The chrysotile surface may form an
idealized, zeroth-order approximation of asbestos sur-
face and was used owing to its relative simplicity and
rigidity, which allow to treat it as a fully rigid body for
all purposes. It should be remembered, however, that
serpentine asbestos is a more complex material, being
formed by microcrystals with a size of the order of a
few nanometres and randomly oriented. Different
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crystallographic planes may be exposed, producing
additional edges and grooves able to modify protein
adsorption. Such features do also affect to various
degrees the interaction of blood proteins with asbestos,
interactions largely due to the fast adsorption of
albumin, the most abundant blood protein. The
amount of this adsorption reflects the protein affinity
towards the substrate and reaches a maximum value
that corresponds probably to a monolayer. The non-
specific adsorption of protein alone is unlikely to
produce the thick layer found in the asbestos body,
but all fibres reaching the alveoli are, within a short
time, likely to be covered with a thin layer of protein
that has been adsorbed from the blood (Churg &
Green 1998).

The first three-dimensional crystal structure
determination of HSA at a resolution of 2.8 A was
obtained by He & Carter (1992) and shows that HSA
has a heart-like asymmetric shape, 80 A on the side, an
average thickness of 30 A and a volume of 88 249 A,
These values are very close to those of human and
bovine a-fetoprotein (Luft & Lorscheiser 1983). Its
primary sequence was known before that derived from
complementary DNA (¢cDNA) data (Minghetti et al.
1986) and shows that HSA is a single, 66 kDa
monomeric polypeptide of 585 amino acid residues,
stabilized by 17 disulphide bridges (Dugaiczyk et al.
1982; Sugio et al. 1999), whose locations were firstly
derived from peptide studies by Brown (1974) and
Saber et al. (1977). HSA shows a peculiar amino acid
distribution, compared with that of a typical protein,
with a low content of Met, Gly and Ile, while the ionic
residues (Glu and Lys) are very abundant. This is
reflected, at least partially, in the facility of interaction
of albumin with anionic and cationic ligands (like
drugs). The presence of only one Trp residue in the
protein has been particularly advantageous in binding
experiments using fluorescent probes (Peters 1996).
HSA is characterized by a repeating pattern of three
a-helical homologous domains derived from genic
multiplication (Brown 1976) and numbered I, II and
III, starting from the amino terminus, an architecture
similar to other plasma proteins like transthyretin and
transferrin. Each domain is divided into two subdo-
mains, A and B (figure 1a), composed of six and four
a-helices (Luft & Lorscheiser 1983; He & Carter 1992),
respectively. Subdomain A is composed of a cluster of
four o-helices (A-hl to A-h4), flanked by two short
o-helices (A-h5 and A-h6), while subdomain B is
composed of one cluster of four a-helices (B-h7 to
B-h10). These a-helices, hence also the subdomains A
and B, are joined by an extended loop and show a
comparable three-dimensional structure. They are
related by a pseudo-binary axis between the two
o-helices A-h2 and B-h8 (He & Carter 1992). In the
HSA tertiary structure, some regions overlap as a
consequence of the helical continuation, from the
C-terminal of subdomains IB and IIB to the N-terminal
of subdomains ITA and IITA (Dockal et al. 1999).

However, in computer simulation methods, the
very large size of albumin prevents accounting for
the whole molecule, hence our choice to investigate
the interaction and adsorption of four specific HSA
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Figure 1. (a) The three-domain structure of HSA with the
protein secondary structure succession shown in different
colours (N- and C-termini are marked as N and C,
respectively). Each domain is divided into two subdomains
(A and B) composed, respectively, of a cluster of four a-helices
flanked by two short a-helices (subdomain A) and one cluster
of four a-helices (subdomain B). The o-helices and the
subdomains A and B are joined by an extended loop and

J. R. Soc. Interface (2008)

subdomains onto the flat chrysotile surface. The
simulations were carried out by using a two-step
strategy, with direct energy minimizations of selected
HSA subdomains close to the chrysotile surface,
using an effective dielectric medium with a distance-
dependent dielectric constant to account for the
dipolar interactions (Raffaini & Ganazzoli 2003,
2004). Extensive MD runs of the previously mini-
mized subdomains follow with subsequent energy
minimization of the instantaneous snapshots. The
first process can be viewed as a simulation of the
initial adsorption step of HSA over the chrysotile
plane, providing also the preferred conformations
during the adsorption process at large surface cover-
age. Conversely, the second procedure yields the best
overall conformation on a clean surface with the
largest interaction energy, leading to the formation
of a stable thin layer of amino acids, basically a
monolayer.

The results obtained by this computational
approach have been compared to the data collected
through an experimental study by FTIR spectroscopy
carried out on synthetic stoichiometric chrysotile
nanocrystals coated with different amount of HSA,
adsorbed in physiological conditions. This experi-
mental approach allows us to quantitatively evaluate
the HSA secondary structure modifications induced by
the electrostatic interactions with the surface of the
synthetic chrysotile nanocrystals.

In this work, we have used synthetic chrysotile
nanocrystals that can be considered an ideal reference
sample to overcome compositional and structural
heterogeneity of mineral chrysotile. To the best of our
knowledge, this is the first investigation on the in vitro
interaction of chrysotile fibres with HSA after the
pioneering work of Morgan (1974).

2. MATERIAL AND METHODS
2.1. Simulation methods

The chrysotile planes were prepared starting from the
experimental crystallographic structure (Whittaker
1956), adding the relevant hydrogen atoms at their
calculated positions. The domains are made of two
chrysotile parallel planes measuring approximately
100X 100 A. The optimal geometrical conformation

show a comparable three-dimensional structure. (b) Solvent
accessible surface (SAS) versus residue number plot, obtained
using a 1.4 A probe resembling a water molecule, with the
indication of the four simulated zones (1-4). (¢) Position of
the four studied zomnes (1-4) within the whole albumin
molecule. The first zone (zone 1) is formed by five connected
a-helices (ranging from h2 to h6) and short random sections
derived from a single HSA domain (IA). The same behaviour
is shown also by the second zone used in the simulation
(zone 2), formed by four o-helices (h2-h5) belonging to
domain ITA, and by zone 4 with four a-helices from the I1IB
domain. Zone 3 is different because it consists of two a-helices
from domain IIB (h3 and h4) and two o-helices from domain
IITA (hl and h2). In all cases, the disulphide bridges are
retained throughout the simulations.
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in vacuo was found using a MM approach running the
conjugate gradient algorithm up to a gradient better
than 10~ % kcal mol ~* A.

Starting coordinates of the non-hydrogen atoms of
HSA used for the initial trial geometries were taken
from the deposited crystallographic structure at 2.5 A
resolution (HSA, PDB ID code: 1AO6; He & Carter
1992; Curry et al. 1998) and consists of two independent
and basically equivalent chains, denoted as A and B.
Chain B, identical to chain A, was deleted and the
structure was checked through MorEman2 (Kleywegt
2000; Kleywegt et al. 2001) and DeepViEw (Guex &
Peitsch 1997) to guarantee the system conformity with
the MD program (in particular, the names of the side
chains that must be congruent with the used force
field). Four specific HSA subdomains have been chosen,
mainly on the basis of their ability to interact with a flat
surface and, consequently, by their calculated solvent
accessibility, to guarantee the selection of the highest
contact area with the chrysotile surface. The solvent
accessible surface plot is shown in figure 15, while the
location of the subdomains within the whole albumin
molecule is shown in figure 1c¢. The first zone, denoted
as zone 1 and ranging from Glul6 to His105, is formed
by five connected a-helices (ranging from h2 to h6) and
short random sections derived from a single HSA
domain (TA). The same behaviour is shown also by
the second zone used in the simulation (zone 2), formed
by four a-helices (h2-h5) belonging to domain ITA, and
by zone 4 with four a-helices from the IIIB domain.
Zone 3, ranging from Ala510 to Alab82, is different
because it consists of two a-helices from domain IIB (h3
and h4) and two o-helices from domain IITA (hl and
h2). In all cases, the disulphide bridges are retained
throughout the simulations.

The four selected subdomains (see later) were
terminated with -COO~ and ~NH3 groups in their
zwitterionic form and the polar hydrogen atoms were
added in their calculated positions. The protonation
state for all the ionizable residues was set to the normal
ionization state at pH 7.0, and both topology and
connectivity of the molecule have been created. The
isolated subdomains were then fully optimized up to an
energy gradient lower than 10~ * keal mol ' A.

The protein fragments were then placed close to the
chrysotile surface and minimized with the assumption of
an effective dielectric medium with a distance-depen-
dent dielectric constant asymptotically yielding the
correct water value (e=78). The conformations
obtained in the effective dielectric medium do essen-
tially coincide with those found in the presence of water
molecules, both being very similar to the experimental
geometries. The hydration effects on the adsorption of
the protein fragments on the chrysotile surface can
affect the kinetics of adhesion to the surface and the
time scale of the subsequent HSA rearrangement
(spreading), a process that is mainly dictated by the
interaction within the HSA fragment and the modified
surface (Raffaini & Ganazzoli 2007). On the other hand,
the final geometries obtained in the dielectric medium
correspond in general to the thermodynamically pre-
ferred conformation, apart from some possible readjust-
ments of the side groups in explicit water. Although

J. R. Soc. Interface (2008)

some fragments may retain a globular shape, possibly
with some residual secondary structure and one side of
the fragments is not solvated, being in contact with the
modified surface, the exposed sides can be efficiently
hydrated forming a large number of hydrogen bonds
with water. The hydration of the amino acids comprised
within the a-helices and the B-sheets of the native
secondary structure is somewhat enhanced, a feature
that may largely compensate the net loss of hydration of
the outer residues in contact with the surface. However,
the energy minimizations carried out in the presence of a
large number of water molecules cannot be used to
calculate the relative stability of different geometries
because, in the presence of a large number of solvent
molecules, most of the atoms in the simulation belong to
water which therefore dominates the total energy.
Moreover, from a thermodynamic viewpoint, the energy
minimizations are equivalent to freezing the system at
0 K, leading to the optimization of water molecules in
some local glass-like configurations of the phase space.
This procedure is however plagued by the problem of the
huge number of local minima, typical of the glassy state.
Owing to these results, all subsequent MD simulations
were performed in a distance-dependent dielectric
medium with periodic boundary conditions, with a
pressure of 1 atm and a constant temperature of 300 K,
controlled through a Berendsen thermostat. Integration
of the dynamical equations was carried out through the
Verlet algorithm with a constant time step of 1.0 fs. In
all cases, the long MD runs in the dielectric medium
lasted for 1.5ns. The instantaneous coordinates (or
frames) were periodically saved for further analysis or
geometry optimization. Within these runs, the total and
potential energy showed an initial decrease and then
fluctuated around a constant value, indicating that an
equilibrium state was finally reached. Each frame
collected during the MD run was then minimized up
to a gradient of less than 1X 10~ % kcal mol ~ .

All simulations steps, including data analysis, were
performed with the NAMD' package (Phillips et al.
2005), using a modified version of the AMBER force field
(Cornell et al. 1995) on a dual-PIII workstation, working
under LINUX RedHat v. 7.3 (SGI-SMP kernel v. 2.4.18-
4SGI_XFS_1.1). All the information related to the
trajectories (positions, energies and velocities) have
been stored in a sequential series of files of appropriate
dimensions (less than 700 Mb) for the back-up.

2.2. Chemical reagents

Reagents were from Sigma—Aldrich; 0.06 M phosphate
buffer (pH 7.4) was from Riedel-de Haen Sigma—Aldrich.

2.3. Synthetic stoichiometric chrysotile
nanocrystals

Stoichiometric chrysotile fibres were synthesized as a
unique phase by means of hydrothermal reactions
under controlled conditions (Falini et al. 2002, 2004).

'NAMD was developed by the Theoretical and Computational
Biophysics Group in the Beckman Institute for Advanced Science
and Technology at the University of Illinois at Urbana-Champaign.
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MCMA41 (average pore size of 3.9 nm and specific area
surface of 910 m?g™') was used as a silica source
instead of reported silica gel, in order to satisfy the
necessary required purity of the reactants in terms of
metal ions. The reaction was carried out mixing
MCMA41 in 0.1 M MgCl, aqueous solution; the Si/Mg
molar ratio was 0.68. The pH was raised to 13.0 by
adding 1 M NaOH solution, and then the hydrothermal
treatment at 82 atm and 300°C for 24 h was performed.
The above reported reaction conditions resulted in
chrysotile nanocrystals as a unique stoichiometric
phase with constant chemical composition, structure,
crystallinity, size, morphology and surface area (Falini
et al. 2004; Roveri et al. 2006).

2.4. Chrysotile fibres

A suspension of the synthetic chrysotile samples (50 mg
per 30 ml) was ultrasonicated in order to disaggregate the
nanocrystals (model ultrasonic UTA, Falc) for 2 min.

2.5. HSA-coated chrysotile nanocrystal
preparation

Protein solutions were prepared by dissolution of HSA in
0.01 M phosphate buffer (pH 7.4) and used immediately.
The adsorption experiments were performed in poly-
propylene centrifuge tubes containing the proper
amount of synthetic chrysotile to achieve an adsorption
area of 2.2m? and 10 ml of liquid. Different protein
concentrations were prepared by adding phosphate
buffer to the protein solution ranging from 0.3 to
2.5 mgml ' During incubation, the tubes were rotated
for 12 h end-over-end at 37°C. The samples were then
centrifuged and the protein concentration in the
supernatant was measured by UV spectroscopy. The
amount of adsorbed protein was calculated from
the difference in the concentration between the initial
and equilibrated solution. Adducts were then lyophi-
lized from the buffer solution at —40°C until they
reached a constant weight.

An HSA reference sample was prepared following the
same procedure as the previous ones, in the absence of
chrysotile nanocrystals.

2.6. Fourier transform infrared analysis

FTIR measurements were carried out on the samples
lyophilized from the buffer solution. The infrared
spectra were measured from 4000 to 400 cm ™! with
2cm ! resolution using a Bruker IFS 66v/S spec-
trometer. The sample compartment atmosphere had a
total pressure of 2 mbar of air dried to an atmospheric
dew point of —40°C (pg,o =13 Pa) by means of a
Balston 76-01 Membrane Air Dryer. Other settings
include an 8 mm aperture, 16 scans, velocity 10 kHz,
DLATGS detector and a 3-term Blackman—Harris
apodization function. KBr pellets were obtained
under vacuum, using 2 mg of the powdered samples
carefully mixed with 200 mg of infrared grade KBr.
Fourier self-deconvolution and second-derivative
resolution enhancement were applied to narrow the
widths of infrared bands and increase the separation of

J. R. Soc. Interface (2008)

the overlapping components. The resolution enhance-
ment resulting from self-deconvolution and the second
derivative is such that the number and position of the
component bands to be fitted are determined. The
curve fitting was carried out employing BRUKER OPUS
peak software (v. 4.0). The number of bands was
entered into the program along with their respective
positions and half-heights. The program iterates the
curve-fitting process to achieve the best Gaussian-
shaped curves that fit the protein spectrum. A best fit is
determined by the root mean square (r.m.s.) of
differences between the original protein spectrum and
the sum of all individual resolved bands. The assign-
ment of component bands in amide I of HSA has been
done according to the literature data. The percentages
of each secondary structure were calculated from the
integrated areas of the component bands in amide I.

3. RESULTS AND DISCUSSION

3.1. Initial adsorption by direct energy
minimizations in the dielectric medium

More details on the amino acids composition within the
four simulated zones and their corresponding a-helices
are reported in table 1, together with the Kyte &
Doolittle (1982) and Rose (Rose et al. 1985) indexes.
However, we note that some amino acids of contrasting
hydropathy index are anyway present in all the
d-helices, irrespective of the overall index, a situation
that is particularly evident for zones 1 and 3. The
structure of the selected zones is shown more clearly in
figure 2a, where the secondary structure is highlighted
by cylinders, denoting the a-helices, and ribbons, which
indicate random strands and regular turns.

The geometry of the isolated subdomains was
optimized for the later determination of the interaction
energy with the chrysotile surface. In the dielectric
medium, the minimized energies amount to —5240.09,
—4260.99, —4151.63 and —4595.16 kcal mol ~* A for
the four analysed zones, respectively. In all cases, there
were little differences between the optimized and the
experimental geometries of the backbone (figure 2b),
but different orientations of the side chains were
evident, mostly due to the lack of hydrogen bonds
with the solvent.

Afterward, the geometries of the selected subdo-
mains close to the chrysotile surface were optimized. In
all cases, there was a significant initial adsorption on
the chrysotile surface, usually accompanied by confor-
mational rearrangements of the interacting strands,
involving a partial loss of secondary structure in the
vicinity of the surface. The results of these initial energy
minimizations are reported in the first part of table 2.
The lowest-energy minima, corresponding to the most
stable states found by this procedure, are taken as zero
values for either zones (Fi,; in table 2). The interaction
energy was then defined as Ein= (Egee + Eplane) — Frot
where ... is the energy of the free, isolated subdomain
in the optimized geometries. According to this
definition, FE;,;>0 is the energy released by the
subdomains upon adsorption. In our simulations, we
have that E,.,.=0 for the reason that the chrysotile
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Table 1. Amino acids composition within the four simulated zones and the corresponding o-helices, together with the Kyte—

Doolittle and Rose indexes.

zones domain a-helix AA range AA number® KD index” Rose index
1 E16-H105 90 29.1 66.14
TIA h2 E16-L31 16 11.9 12.66
h3 P35-D56 22 —2.7 16.04
h4 S65-T76 12 3.5 9.04
h5 A88-A92 5 5.1 3.92
h6 E95-H105 11 —-17.7 7.81
2 E208-E280 73 —29.5 52.59
1A h2 E208-F223 16 —5.3 11.62
h3 E227-H247 21 —1.3 15.56
h4 L250-E266 17 —0.9 12.49
h5 L275-E280 6 —-2.1 4.43
3 W341-V415 75 —18.2 54.30
1IB h3 S342-A362 21 12.5 15.71
h4 D365-E383 19 —14.4 13.56
IITA hi1 P384-1.398 15 —8.8 10.74
h2 Y401-V415 15 —5.9 10.71
4 A510-A582 73 —31.6 50.52
II1B hi1 A510-T515 6 6.4 4.59
h2 E518-K536 19 —23.1 12.86
h3 E542-K560 19 0.9 13.88
h4 E565-A582 18 —1.4 12.80

# The number of amino acids in the subdomains exceeds the sum of those in the a-helices owing to the presence of regular turns

and random strands.

> Kyte-Doolittle index, calculated as the sum of the values for the individual amino acids. A positive hydropathy value

indicates hydrophobicity and a negative one hydrophilicity.

planes are kept fixed, although all their atoms do
correctly interact with the HSA subdomains. E i, was
defined as the difference between Ej and Ey,..., where Fy
is the energy of the isolated subdomains in the geometry
they adopt upon adsorption.

In all the cases investigated, the amino acids close to
the surface locally optimize their interactions with the
chrysotile planes by partially loosing their secondary
a-helical structure, as shown in figure 2¢(i) for zone 1.

In particular, all the o-helices are significantly
shortened when close to the surface, in order again to
maximize the amino acid—surface interactions through
a partial loss of the secondary structure. Some
helicoidal features are retained, but with large distor-
tions from the typical conformation of the a-helices, so
that H-bonds between adjacent turns are absent.
Therefore, these helicoidal strands cannot be classified
as genuine o-helices.

The driving force for the a-helices unfolding consists
here in their favourable electrostatic interactions with
the chrysotile plane. As a general feature, upon adsorp-
tion the subdomains achieve a lower energy, hence a
larger Ei,;, when more amino acids interact with the
surface, irrespective of their overall hydropathy index,
because of the apparently random distribution of
hydrophobic and hydrophilic residues. However, it
should be noted that, in this initial adsorption phase,
E,,.; seems to be partially correlated with the hydropathy
index values for the single a-helix (local effect). In fact,
the highest Fj,; values are observed for those zones (like
zones 4 and 3) containing hydrophilic helices (IIIB-h2
and TA-h6, respectively; table 1), while zone 3, containing
the most hydrophobic a-helix (IIB-h3), shows the lowest

J. R. Soc. Interface (2008)

E,,, value. This latter finding is not unexpected due to
the cooperative nature of the adsorption process of a
complex copolymer (like a protein fragment) on a polar
surface. The a-helices undergo a large strain in order to
optimize their interactions with the surface. Therefore,
we expect that a larger interaction should usually be
accompanied by a greater strain energy of the adsorbed
subdomains, hence a larger deformation, so as to allow
more amino acids to be in contact with the surface. By
extrapolation, we expect that the subdomains can also
undergo much larger deformations than those reported in
figure 2¢ owing to the increasingly stronger interactions
with the chrysotile surface. The strain energy is mainly
(though not exclusively) due to the energy cost of the
H-bonds breaking between the amino acids belonging to
the a-helices. Thus, Ega, is also roughly related with
both the hydropathy index values for the single a-helix
and the number of broken intrahelix H-bonds (table 2).
Additionally, a larger Ey.i, is also accompanied by a
smaller number of amino acids still structured in
o-helices (table 2). Conversely, the higher energy states
show only minor conformational changes of the adsorbed
subdomains. Therefore, they show not only a smaller
strain energy but also a smaller F;,;, with fewer broken
H-bonds and more amino acids retaining the original
a-helical structure.

3.2. Adsorption by MD runs and energy
minimizations in the dielectric medium

The geometries obtained in §3.1 were subjected to MD
runs to search the best final adsorption geometry with
the overall energy minimum. The MD runs show a
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63
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805.37 153.06

—5066.36
—4817.79
—6013.43
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26
11

16
15
20

28.27
20.80
85.26

—4768.90 507.91

—4407.42
—4971.14

769
862

zone 2

10

151.66

966.16

49

455.79

zone 3

226.26

918.26

20

575.97

807

zone 4

# Initial contact area values.
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better than 415 kcalmol ', Some details of these
geometries are reported in the second part of table 2
and shall be discussed below. The large rearrangements
undergone by the subdomains within the initial stage of
the MD runs can be qualitatively described as a fast
liquid-like spreading of the adsorbed subdomains on the
surface, possibly followed by small later readjustments
of minor importance. The whole process leads to a very
large contact area between the subdomains and the
chrysotile surface. For the albumin subdomains
considered here, the whole process quickly leads to
the formation of a monolayer of amino acids evenly
coating the surface. Here, all the a-helices are fully
denatured and nearly all the amino acids are in contact
with the chrysotile plane (figure 2¢(ii)). In these final
states, the whole pattern of intramolecular H-bonds is
disrupted. Only a few hydrogen bonds are found,
mostly involving the side groups of topologically
adjacent amino acids.

The large rearrangements observed in the final
adsorption step greatly modify the size of the sub-
domains and, in particular, the contact surface area
(the footprints of the subdomains) before and after the
final adsorption stage. This contact area is most simply
obtained through the difference between the area of the
protein surface accessible to the solvent before and after
adsorption. In turn, the accessible surface, or Connolly
surface, is evaluated through a spherical probe of radius
1.4 A, mimicking a water molecule, rolling on the
exposed van der Waals surface. Upon full spreading on
the chrysotile plane, the contact area of the four
analysed zones increases by a factor of approximately
2.75, 2.98, 2.83 and 3.15, respectively (relative to the
initial contact area values reported in table 2), com-
parable with the experimental values found for the
initial spreading of albumin on a hydrophobic surface.
The increase in contact area, together with the Fy .in
values, are now in agreement with the overall hydropa-
thy index, suggesting the importance of the whole
subdomains structure in the second (or final) adsorp-
tion phase. Note that we might expect the whole
protein to show an even larger increase of its footprint
upon surface denaturation owing to its overall size
(figure 1a). On the other hand, it should be realized
that, in addition to the intermolecular interactions still
present between the protein and the chrysotile plane
(mainly hydrogen bonds), the network of intra-
molecular disulphide bridges hinders the full albumin
spreading on the surface, thus limiting somewhat the
contact area.

3.3. FTIR analysis of HSA-coated chrysotile
nanocrystals

HSA structural modifications induced by interaction
with the chrysotile surface have been investigated by
FTIR spectroscopy. In fact, FTIR spectra allow an
evaluation of the percentage content of each secondary
structure by Gaussian curve fitting using the amide I
spectral region according to the literature data
(Jakobsen & Wasacz 1990; Fu et al. 1999; Pelton &
McLean 2000; Servagent-Noinville et al. 2000;
Carrasquillo et al. 2001a,b; Min et al. 2004). In the

J. R. Soc. Interface (2008)

@)

1700 1680 1660 1640 1620
wavenumber (cm1)

=

1720 1600

Figure 3. FTIR spectra and their Gaussian curve fitting from
HSA-coated chrysotile nanocrystals at (a) low, (b) medium
and (c¢) high surface coverage, where a shift at higher
wavenumbers is clearly evident as a function of I'.

FTIR spectra, the band range 1610-1640 cm™ ' is
generally assigned to B-sheet, 1640-1650 cm ~* to random
coil, 1650-1658 cm ™~ ! to a-helix and 16601700 cm ™ * to
B-turn structures (Min et al. 2004). Figure 3a reports the
FTIR spectra and their Gaussian curve fitting in the
1750-1600 cm ™' region (amide T bands) for the lyophi-
lized HSA-coated chrysotile nanocrystals for low
(0.5 mg ml~ ") HSA starting concentration. The second-
ary structure elements, calculated in percentages from
the integrated areas of the component bands, are
reported in table 3, where they are compared with those
obtained from native HAS-lyophilized powder from
aqueous solution at pH 7.4, which are very close to the
values previously reported (Griebenow & Klibanov
1995). The appreciable differences in protein confor-
mation observed in the protein coating are due to the
interaction of albumin with the inorganic surface. They
are the experimental evidence of the results obtained
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Table 3. HSA secondary structure (%). (The ¢+’ values are standard deviations calculated by analysing five individual spectra in

each case.)

HSA-coated chrysotile

nanocrystals I'gsa (mg m72) a-helix B-sheet B-turn random coil
1.04 14+1 25+1 52+1 8+1
1.55 1542 18+2 5712 10+2
2.04 1441 15+1 59+1 12+1

HAS lyophilized 33+1 16+1 52+1 0

by the modelling approach described above. Actually, the
a-helix content appears drastically reduced in favour of
an increase in B-sheet and random coils content, in
agreement with the computational evidence of a
partial loss of secondary structure during the adsorption
first step.

In addition, HSA-coated chrysotile nanocrystals
have been investigated by FTIR spectroscopy as a
function of the protein concentration which induces a
different degree of surface coverage. Surface coating
extent (I') represents the amount of protein adsorbed
(mg m ™~ ?) at constant temperature on a given substrate
and strongly depends on the surface features: a
hydrophilic substrate, like chrysotile, may adsorb a
much greater protein amount than a hydrophobic one
(Nakanishi et al. 2001). It is important to take into
account that at pH 7.4, HSA (isoelectric point 4.6) and
chrysotile (isoelectric point 8-12, according to the
different amount of magnesia) are predominantly
negatively and positively charged, respectively; thus
electrostatic forces play here an important role.

A given amount of chrysotile nanocrystals has been
interacted with HSA solutions at different starting
concentrations. The lyophilized solid samples obtained
after centrifugation of the suspensions were examined
by FTIR spectroscopy.

Figure 3b,c reports the FTIR spectra and their
Gaussian curve fitting in the 1750-1600 cm ™' region
(amide I bands) for the lyophilized HSA-coated
chrysotile nanocrystals for medium (1.0 mg ml~") and
high (4 mg ml~") HSA starting concentration, respect-
ively. No appreciable modification in the a-helix bands
range appears as the coating extent increases. At the
same time, between 1640 and 1650 cm ™! and between
1660 and 1700 cm ™' an evident spectral modification
can be appreciated, indicative of increased random and
B-turn structure contents. In particular, the bands
between 1660 and 1700 cm ™~ ' (B-turns region) increase
in intensity with increasing I', showing the strongest
variation for the highest protein concentration. On the
contrary, the B-sheet spectral evidence decreases in
intensity for increasing I' values, in agreement with a
consistent reduction of their presence.

The HSA secondary structure elements, calculated
in percentages from the integrated areas of the
component bands, are reported in table 3 as a function
of the surface coating extent (I'), determined by the
medium and high protein concentrations. On the whole,
when comparing the three different surface coatings
within themselves, the B-sheet and B-turn contents
appreciably decrease and increase, respectively, with
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the increase in I' value, while the a-helix amount
appears to be quite independent of the surface coating
extent. On the other hand, if compared to the native
protein secondary structure, the B-sheet content, after
the initial increase at low I" value, tends to get lower up
to the percentage observed for the protein not deposited
on the inorganic surface.

These results support the protein structural changes
first observed using bovine serum albumin on the same
synthetic chrysotile surface for a very low surface
coverage (I'=0.18 mg m~ 7% Falini et al. 2006).
Although for the highest surface coverage the major
protein modification in terms of B-sheet, B-turn and
random coil percentages can be fully observed, it must
however be underlined that using a range of HSA initial
concentrations (0.5-4 mg ml~ ') allows one to appreci-
ate that the greater differences in protein conformation
appear on passing from the low to the medium surface
coating extent. In fact, when the protein—surface
interaction is prevailing on the protein—protein
interactions, owing to the greater accessibility of the
surface and the strong electrostatic effect that it can
exert, the great protein flexibility can be fully
displayed. The observed increase in B-turn structures,
which are concentrated on the exterior of the protein,
may be related to the protein unfolding in order to
expose the interior regions. This change in secondary
structure is probably driven by the formation of
surface-mediated hydrogen bonds, with the polar side-
chain groups serving as sites for molecular recognition.

Our future aim is to investigate structural pertur-
bations of the adsorbed and hydrated protein by FTIR
spectroscopy in order to better characterize protein—
substrate interactions.

4. CONCLUSIONS

The HSA secondary structure modifications induced by
the chrysotile surface have been studied via MD and
experimental FTIR methods. The interaction of HSA
subdomains selected on the basis of their solvent
accessibility with the chrysotile surface was investi-
gated through MM and MD simulations. HSA adsorp-
tion on the chrysotile surface, considered as a rigid
body, is characterized by conformational rearrange-
ments, involving a partial loss of secondary structure
close to the surface. All the a-helices are significantly
shortened while some helicoidal features are retained,
but with large distortions, so that the H-bonds between
adjacent turns are absent. The whole process leads to a
very large contact area between the subdomains and
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the chrysotile surface, quickly leading to the formation
of an amino acid monolayer. Contact area and energy
values analysis suggest the importance (at least in the
initial adsorption phase) of the a-helices local structure,
while the final adsorption phase seems to be driven by
the whole subdomains structure.

FTIR spectroscopy investigation carried out on
HSA-coated chrysotile nanocrystals at different protein
concentration allows one to experimentally quantify
HSA secondary structure modifications due to
interaction with the inorganic surface. Experimental
data support the adhesion mechanism indicated by MD
computational approach. In fact, for low I' value
corresponding to the initial adsorption step, the
a-helix content appears drastically reduced when
compared with the protein not deposited on the
substrate, while an increase in B-sheet and random
coils content is evident.

A second adsorption step may be singled out during
which, with the increase in I' value, the B-sheet and
B-turn contents appreciably decrease and increase,
respectively, while the a-helix amount does not change
appreciably.

The present results give strong support to the
atomistic computer simulations as a powerful tool to
provide a realistic description of the mechanism of the
adsorption process of plasma proteins on the chrysotile
surface, which can be quantitatively investigated by
FTIR spectroscopy, gaining insight into the mechanism
of asbestos toxicity.

MIUR (Prin 2006032335), CIRCMSB, CNR and University
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